Skip to main content
HOME
www.lmu.de
Fakultät 11
UnterrichtsMitschau
Lehrfilme
UnterrichtOnline.org
Aktuelle Vorlesungen
Alle Vorlesungen
Faculties
Fakultätsübergreifende Vorlesungen
Katholisch-Theologische Fakultät (Fakultät 1)
Evangelisch-Theologische Fakultät (Fakultät 2)
Juristische Fakultät (Fakultät 3)
Fakultät für Betriebswirtschaft (Fakultät 4)
Volkswirtschaftliche Fakultät (Fakultät 5)
Medizinische Fakultät (Fakultät 7)
Tierärztliche Fakultät (Fakultät 8)
Fakultät für Geschichts- und Kunstwissenschaften (Fakultät 9)
Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft (Fakultät 10)
Fakultät für Psychologie und Pädagogik (Fakultät 11)
Fakultät für Kulturwissenschaften (Fakultät 12)
Fakultät für Sprach- und Literaturwissenschaften (Fakultät 13)
Sozialwissenschaftliche Fakultät (Fakultät 15)
Fakultät für Mathematik, Informatik und Statistik (Fakultät 16)
Fakultät für Physik (Fakultät 17)
Fakultät für Chemie und Pharmazie (Fakultät 18)
Fakultät für Biologie (Fakultät 19)
Fakultät für Geowissenschaften (Fakultät 20)
Seniorenstudium
Tutorials
FAQs
Big Data Management and Analytics
Hinweis:
Die Vorlesungszeit beginnt am 16.10.2017, vorher erscheinen hier keine Inhalte.
The Flip Side of the Coin
Date:
30.01.2018
Lecturer:
Prof. Dr. Matthias Schubert
Node Importance and Neighborhoods
Date:
23.01.2018
Lecturer:
Prof. Dr. Matthias Schubert
Community Detection
Date:
16.01.2018
Lecturer:
Prof. Dr. Matthias Schubert
Text Processing and High-Dimensional Data
Date:
09.01.2018
Lecturer:
Prof. Dr. Matthias Schubert
Text Processing and High-Dimensional Data
Date:
19.12.2017
Lecturer:
Prof. Dr. Matthias Schubert
Teil:2 Stream Analytics
Date:
19.12.2017
Lecturer:
Prof. Dr. Matthias Schubert
Stream Analytics
Date:
12.12.2017
Lecturer:
Prof. Dr. Matthias Schubert
Stream Processing
(00:00:00)
>
Apache Flink
(00:00:34)
>
Introduction to Apache Flink
(00:01:54)
>
Flink Software Stack
(00:02:42)
>
System Legacy
(00:02:43)
>
Architecture
(00:03:13)
>
Dataflow Graphs
(00:04:34)
>
Intermediate Data Streams
(00:08:32)
>
Latency and Throughput
(00:11:54)
>
Control Events and Fault Tolerance
(00:12:57)
>
Stateful Streams Processing
(00:14:12)
>
Stream Windows
(00:14:17)
>
Batch Processing
(00:15:49)
>
Query Optimization
(00:16:26)
>
Memory Management
(00:17:33)
>
Batch Iterations
(00:17:36)
>
API Examples
(00:18:04)
>
API Examples
(00:19:44)
>
Outlook
(00:25:30)
>
Maintaining Histograms
(00:26:51)
>
Maintaining Histograms
(00:29:05)
>
Maintaining Histograms
(00:31:25)
>
Maintaining Histograms
(00:33:18)
>
Maintaining Histograms
(00:34:08)
>
Stream Applications and Algorithms
(00:36:45)
>
Maintaining Histograms
(00:37:16)
>
Stream Applications and Algorithms
(00:38:48)
>
Maintaining Histograms
(00:42:58)
>
Maintaining Histograms
(00:43:55)
>
Maintaining Histograms
(00:49:24)
>
Maintaining Histograms
(00:52:34)
>
Change Detection
(00:56:39)
>
Change Detection
(00:58:09)
>
Change Detection
(00:59:42)
>
Change Detection
(01:03:03)
>
Change Detection
(01:05:00)
>
Change Detection
(01:05:18)
>
Change Detection
(01:05:41)
>
Change Detection
(01:09:06)
>
Change Detection
(01:09:49)
>
Frequent ItemsetMining
(01:14:50)
>
Frequent ItemsetMining
(01:17:16)
>
Frequent ItemsetMining
(01:18:55)
>
Frequent ItemsetMining
(01:24:34)
>
Frequent ItemsetMining
(01:27:39)
>
Frequent ItemsetMining
(01:33:23)
>
Frequent ItemsetMining
(01:37:14)
>
Clustering fromData Streams
(01:44:33)
>
Clustering fromData Streams
(01:48:39)
>
Clustering fromData Streams
(01:49:58)
>
Clustering fromData Streams
(01:51:06)
>
Clustering fromData Streams
(01:54:49)
>
Clustering fromData Streams
(01:57:08)
>
Clustering fromData Streams
(02:02:23)
>
Clustering fromData Streams
(02:05:25)
>
Clustering fromData Streams
Date:
05.12.2017
Apache Flink
Date:
28.11.2017
Lecturer:
Prof. Dr. Matthias Schubert
Stream Processing
(00:00:00)
>
Apache Spark
(00:00:27)
>
Motivation
(00:01:12)
>
Motivation
(00:02:53)
>
Apache Spark
(00:04:13)
>
RDD Transformations and actions
(00:04:41)
>
RDD Transformations and actions
(00:10:24)
>
Apache Spark
(00:12:45)
>
RDD Transformations and actions
(00:12:47)
>
Architecture
(00:14:08)
>
RDD narrow and wide dependencies
(00:16:02)
>
Lettercountexamples
(00:16:07)
>
Shuffle reduceByKey
(00:16:18)
>
Lettercountexamples
(00:18:39)
>
Shuffle reduceByKey
(00:19:06)
>
Shuffle groupByKey
(00:20:09)
>
Other relevant spark projects
(00:22:19)
>
Other relevant spark projects
(00:22:33)
>
Sources
(00:23:27)
>
Example application: Facebook
(00:24:23)
>
Example application: Twitter
(00:27:00)
>
Example application: CERN
(00:33:55)
>
Stream Processing
(00:35:01)
>
Stream Processing
(00:35:50)
>
Stream Processing
(00:41:29)
>
Stream Processing
(00:44:40)
>
Stream Processing
(00:46:19)
>
Stream Processing
(00:48:28)
>
Stream Processing
(00:49:32)
>
Stream Processing
(00:52:32)
>
Stream Processing
(00:55:27)
>
Stream Processing
(00:56:03)
>
Stream Processing
(00:58:11)
>
Stream Processing
(01:00:25)
>
Stream Processing
(01:03:42)
>
Stream Processing
(01:12:19)
>
Stream Processing
(01:13:41)
>
Stream Processing
(01:19:38)
>
Stream Processing
(01:21:46)
>
Stream Processing
(01:29:43)
>
Stream Processing
(01:32:43)
>
Stream Processing
(01:33:18)
>
Stream Processing
(01:37:04)
>
Stream Processing
(01:37:44)
>
Stream Processing
(01:38:29)
>
Stream Processing
(01:39:04)
>
Stream Processing
(01:40:17)
>
Stream Processing
(01:41:18)
>
Stream Processing
(01:41:40)
>
Stream Processing
(01:44:42)
>
Stream Processing
(01:46:42)
>
Stream Processing
(01:50:02)
>
Stream Processing
(01:52:58)
>
Stream Processing
(01:55:11)
>
Stream Processing
(01:59:00)
>
Stream Processing
(02:02:13)
>
Stream Processing
(02:03:05)
>
Stream Processing
(02:03:54)
>
Stream Processing
(02:05:37)
>
Stream Processing
(02:08:54)
>
Stream Processing
Date:
21.11.2017
Apache Spark
(00:00:00)
>
Batch Processing Systems
(00:00:59)
>
Outline
(00:02:52)
>
NoSQL and RBDMS
(00:09:20)
>
NoSQL and Batch Systems
(00:10:42)
>
Distributed File Systems
(00:12:27)
>
Distributed File Systems
(00:12:29)
>
Distributed File Systems
(00:12:50)
>
Distributed File Systems
(00:16:09)
>
Distributed File Systems
(00:16:10)
>
Hadoop Distributed File System (HDFS)
(00:17:51)
>
HDFS-Architecture
(00:18:12)
>
Data Storage Operations on HDFS
(00:22:21)
>
Partitioning the input data
(00:22:28)
>
Partitioning the input data
(00:28:07)
>
Partitioning the input data
(00:28:13)
>
HDFS Robustness
(00:28:20)
>
Overview
(00:28:57)
>
MapReduce
(00:29:04)
>
MapReduce
(00:29:56)
>
MapReduce
(00:30:18)
>
MapReduce
(00:33:46)
>
MapReduce
(00:34:11)
>
MapReduce
(00:38:25)
>
MapReduce
(00:42:00)
>
MapReduce
(00:42:08)
>
MapReduce
(00:42:10)
>
MapReduce
(00:42:34)
>
MapReduce
(00:42:36)
>
MapReduce
(00:42:41)
>
MapReduce
(00:42:44)
>
MapReduce
(00:43:03)
>
Big Data in Hadoop
(00:44:32)
>
Apache Spark
(00:44:49)
>
Motivation
(00:46:58)
>
Motivation
(00:51:26)
>
Resilient Distributed Dataset (RDD)
(00:54:43)
>
Resilient Distributed Dataset (RDD)
(00:57:54)
>
RDD Transformations and actions
(01:05:46)
>
RDD Transformations and actions
(01:07:48)
>
Architecture
(01:10:12)
>
RDD narrow and wide dependencies
(01:13:27)
>
Shuffle
(01:17:34)
>
Lettercount examples
(01:23:27)
>
Shuffle reduceByKey
(01:24:46)
>
Shuffle groupByKey
(01:27:03)
>
Lettercount examples
(01:29:11)
>
RDD Persistence
(01:29:39)
>
RDD Persistence
(01:31:26)
>
RDD Persistence
(01:35:18)
>
RDD Persistence
(01:40:01)
>
Shared variables
(01:44:30)
>
Shared variables
(01:46:56)
>
Shared variables
(01:48:57)
>
Shared variables
(01:50:58)
>
Shared variables
(01:53:57)
>
Other relevant spark projects
(02:02:54)
>
Other relevant spark projects
(02:05:29)
>
Sources
Date:
14.11.2017
Lecturer:
Prof. Dr. Matthias Schubert
Batch Systems
(00:00:02)
>
Outline
(00:00:52)
>
NoSQL and RBDMS
(00:02:43)
>
NoSQL and Batch Systems
(00:05:52)
>
Distributed File Systems
(00:14:01)
>
Hadoop Distributed File System (HDFS)
(00:17:09)
>
HDFS-Architecture
(00:18:22)
>
Data Storage Operations on HDFS
(00:19:27)
>
Partitioning the input data
(00:29:51)
>
HDFS Robustness
(00:30:55)
>
Data Disk Failure, Heartbeats and Re-replication
(00:34:57)
>
Cluster Rebalancing
(00:38:04)
>
Data Integrity
(00:40:38)
>
Metadata Disk Failure
(00:43:57)
>
Snapshots
(00:46:01)
>
Overview
(00:46:32)
>
MapReduce
(01:53:01)
>
Big Data in Hadoop
Date:
07.11.2017
Lecturer:
Prof. Dr. Matthias Schubert
NoSQL Databases
Date:
24.10.2017
Lecturer:
Prof. Dr. Matthias Schubert
Data Science: The Big Picture
Date:
17.10.2017
Lecturer:
Prof. Dr. Matthias Schubert
RSS-Feed abonnieren: