Skip to main content
HOME
www.lmu.de
Fakultät 11
UnterrichtsMitschau
Lehrfilme
UnterrichtOnline.org
What is VideoOnline?
Watch our introduction!
Aktuelle Vorlesungen
Alle Vorlesungen
Faculties
Fakultätsübergreifende Vorlesungen
Katholisch-Theologische Fakultät (Fakultät 1)
Evangelisch-Theologische Fakultät (Fakultät 2)
Juristische Fakultät (Fakultät 3)
Fakultät für Betriebswirtschaft (Fakultät 4)
Volkswirtschaftliche Fakultät (Fakultät 5)
Medizinische Fakultät (Fakultät 7)
Tierärztliche Fakultät (Fakultät 8)
Fakultät für Geschichts- und Kunstwissenschaften (Fakultät 9)
Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft (Fakultät 10)
Fakultät für Psychologie und Pädagogik (Fakultät 11)
Fakultät für Kulturwissenschaften (Fakultät 12)
Fakultät für Sprach- und Literaturwissenschaften (Fakultät 13)
Sozialwissenschaftliche Fakultät (Fakultät 15)
Fakultät für Mathematik, Informatik und Statistik (Fakultät 16)
Fakultät für Physik (Fakultät 17)
Fakultät für Chemie und Pharmazie (Fakultät 18)
Fakultät für Biologie (Fakultät 19)
Fakultät für Geowissenschaften (Fakultät 20)
Seniorenstudium
Tutorials
FAQs
Machine Learning
Model Selection and Estimation of the Generalization Cost (cont.) // Bayesian Networks: Construction, Inference, Learning and Causal Interpretation // Deep X: Deep Learning with Deep Knowledge
(00:00:00)
>
Introduction and recapitulation
(00:36:55)
>
A: Classical Frequentist Approaches: Akaikes Information Criterion (AIC)
(00:42:17)
>
B: Bayesian Approaches
(00:56:43)
>
C: Modern Frequentist Approaches
(01:10:39)
>
Bayesian Networks: Construction, Inference, LEarning and Causal Interpretation
(01:25:21)
>
Deep X: Deep Learning with Deep Knowledge
Date:
05.07.2018
Lecturer:
Volker, Tresp
Model Selection and Estimation of the Generalization Cost
(00:00:00)
>
Introduction and recapitulation
(01:02:00)
>
Model Selection and Estimation of the Generalization Cost
(01:23:07)
>
Learning Theories
(01:36:02)
>
A: Classical Frequentist Approach
Date:
28.06.2018
Lecturer:
Volker, Tresp
Frequentist Statistics and Bayesian Statistics (cont.) // Linear Classification // Optimal Separating Hyperplane and the Support Vector Machine
(00:00:00)
>
Introduction and recapitulation
(00:34:54)
>
Bayesian Statistics
(00:47:19)
>
Linear Classification
(01:29:53)
>
Logistic Regression in Medical Statistics
(01:42:38)
>
Optimal Separating Hyperplane and the Support Vector Machine
Date:
21.06.2018
Lecturer:
Volker, Tresp
Factorization, Principal Component Analysis and Singular Value Decomposition
(00:00:00)
>
Introduction and recapitulation: Linear Regression and Unknown Inputs
(00:07:43)
>
Factorization
(00:18:20)
>
PCA
(00:38:42)
>
PCA Applications
(00:42:52)
>
PCA Example: Handwritten Digits
(00:49:32)
>
Eigenfaces: similarity search of images
(00:57:50)
>
PCA and Singular Value Decomposition
(01:09:43)
>
Application: Similarities Between Documents
Date:
14.06.2018
Lecturer:
Florian Buettner
Some Concepts of Probability (Review) // Frequentist Statistics and Bayesian Statistics
(00:00:00)
>
Introduction and recapitulation
(00:33:55)
>
Some Concepts of Probability (Review)
(01:31:31)
>
Frequentist Statistics
(02:06:55)
>
Bayesian Statistics
Date:
07.06.2018
Lecturer:
Volker, Tresp
Deep Learning
(00:00:00)
>
Introduction and Overview
(00:04:36)
>
Introduction to Deep Learning
(00:30:27)
>
Implementation of a Deep Learning Model
(00:38:41)
>
Basic Building Blocks
(01:06:04)
>
Thinking in Macro Structures
(01:15:28)
>
End-to-End Model Design
(01:19:27)
>
Deep Learning Model Training
(01:25:32)
>
Loss Function Design
(01:33:37)
>
Optimization
(01:51:28)
>
Regularization
(01:53:12)
>
Additional Notes
Date:
24.05.2018
Lecturer:
Dr. Denis Krompaß
Feature Spaces, Manifolds, and Deep Generative Models (cont.) // Kernels
(00:00:00)
>
Introduction and recapitulation
(00:14:29)
>
Feature Spaces, Manifolds, and Deep Generative Models (cont.)
(00:58:41)
>
Kernels
Date:
17.05.2018
Lecturer:
Volker, Tresp
Deep Learning // Feature Spaces, Manifolds, and Deep Generative Models
(00:00:00)
>
Introduction and recapitulation
(00:37:10)
>
Deep Learning
(01:14:03)
>
Convolutional Neural Networks (CNNs)
(01:40:08)
>
Feature Spaces, Manifolds, and Deep Generative Models
Date:
03.05.2018
Lecturer:
Volker, Tresp
Basis Functions // Neural Networks
(00:00:00)
>
Introduction and recapitulation
(00:27:54)
>
Basis Functions
(01:17:43)
>
Neural Networks
Date:
26.04.2018
Lecturer:
Volker, Tresp
The Perceptron // Linear Algebra (Review) // Linear Regression
(00:00:00)
>
Introduction and recapitulation
(00:31:09)
>
The Perceptron
(01:23:16)
>
Linear Algebra (Review)
(01:34:41)
>
Linear Regression
Date:
19.04.2018
Lecturer:
Volker, Tresp
Introduction
(00:00:00)
>
Introduction
(00:21:06)
>
Non-Technical Perspectives on Learning: Philosophy
(00:50:56)
>
Non-Technical Perspectives on Learning: Psychology, Cognition and Cognitive Neuroscience
(01:17:14)
>
Non-Technical Perspectives on Learning: Cellular Neuroscience
(01:26:18)
>
Machine Learning: Before the Computer Age to Today: Statistics
(01:35:56)
>
Machine Learning: Neural Computation I (Perceptron)
(01:41:10)
>
Machine Learning: Classical Artificial Intelligence
(01:50:34)
>
Machine Learning: Neural Computation II (Multilayer Perception)
(01:56:20)
>
Machine Learning: Mathematically Wee-Founded Models
(01:57:34)
>
Machine Learning: Neural Computation III (Deep Learning
(02:04:31)
>
Details on the Lecture
Date:
12.04.2018
Lecturer:
Volker, Tresp
RSS-Feed abonnieren: