Skip to main content
HOME
www.lmu.de
Fakultät 11
UnterrichtsMitschau
Lehrfilme
UnterrichtOnline.org
What is VideoOnline?
Watch our introduction!
Aktuelle Vorlesungen
Alle Vorlesungen
Faculties
Fakultätsübergreifende Vorlesungen
Katholisch-Theologische Fakultät (Fakultät 1)
Evangelisch-Theologische Fakultät (Fakultät 2)
Juristische Fakultät (Fakultät 3)
Fakultät für Betriebswirtschaft (Fakultät 4)
Volkswirtschaftliche Fakultät (Fakultät 5)
Medizinische Fakultät (Fakultät 7)
Tierärztliche Fakultät (Fakultät 8)
Fakultät für Geschichts- und Kunstwissenschaften (Fakultät 9)
Fakultät für Philosophie, Wissenschaftstheorie und Religionswissenschaft (Fakultät 10)
Fakultät für Psychologie und Pädagogik (Fakultät 11)
Fakultät für Kulturwissenschaften (Fakultät 12)
Fakultät für Sprach- und Literaturwissenschaften (Fakultät 13)
Sozialwissenschaftliche Fakultät (Fakultät 15)
Fakultät für Mathematik, Informatik und Statistik (Fakultät 16)
Fakultät für Physik (Fakultät 17)
Fakultät für Chemie und Pharmazie (Fakultät 18)
Fakultät für Biologie (Fakultät 19)
Fakultät für Geowissenschaften (Fakultät 20)
Seniorenstudium
Tutorials
FAQs
Managing Massive Multiplayer Online Games (sose18)
Chapter 9: Artificial Intelligence (cont.)
(00:00:00)
>
Chapter 9: Artificial Intelligence – Overview
(00:05:26)
>
Information regarding final exam
(00:06:12)
>
Recap Chapter 9
(00:50:44)
>
Function Approximation
(01:13:38)
>
Examples (OpenAI Gym)
(01:18:18)
>
Why is AI important for Games?
(01:28:54)
>
Imitation Learning
(01:39:45)
>
Antagonistic Search
(01:52:16)
>
Min-Max Search // Alpha-Beta Pruning
(02:04:06)
>
Monte Carlo Tree Search
(02:18:23)
>
Chapter 9 – Learning Goals and Literature
Date:
03.07.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 8: Ranking Skill (rep.) // Chapter 9: Artificial Intelligence
(00:00:00)
>
Recap Chapter 8
(00:19:29)
>
Chapter 9: Artificial Intelligence – Overview
(00:23:47)
>
What is Artificial Intelligence?
(00:24:44)
>
Environments // Agents
(00:37:00)
>
Sequential Decision Making // Deterministic Sequential Planning
(00:51:02)
>
Routing in Open Environments // Visibility Graph // Expansion with Start- and Goal-Nodes
(00:57:32)
>
Dijkstra’s Algorithm
(01:01:06)
>
A*-Search
(01:07:34)
>
Visibility Graph for extended Objects
(01:12:00)
>
More Pathfinding Methods
(01:14:09)
>
Markov Decision Process
(01:17:44)
>
Motivation non-deterministic Routing // Policies and Utilities
(01:24:18)
>
Bellman’s Equations
(01:27:58)
>
Policy Iteration // Policy Evaluation // Value Iteration
(01:37:31)
>
MDP Synopsis // Model-Free Reinforcement Learning
(01:46:53)
>
Monte-Carlo Policy Evaluation
(01:53:28)
>
Temporal Difference Learning
(01:57:44)
>
Policy Optimization // Samples and Policy Updates
(02:05:49)
>
Learning on a Queryable Environment
(02:09:37)
>
Epsilon-Greedy Exploration
(02:11:29)
>
On-Policy and Off-Policy Learning // Q-Learning
Date:
26.06.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 7: Spatial Analytics (cont.) // Chapter 8: Ranking Skill
(00:00:00)
>
Information regarding final exam
(00:01:31)
>
Recap Chapter 7
(00:07:30)
>
Spatial Data Mining // Spatial Outlier Detection
(00:17:10)
>
Trajectories
(00:21:38)
>
Distance Measures for Trajectories // LCSS Similarity
(00:30:32)
>
Compressing Trajectories // Douglas-Peucker Algorithm
(00:40:46)
>
Pattern Search in Trajectories
(00:42:13)
>
Flocks
(00:57:48)
>
Encounters
(01:19:13)
>
Chapter 7 – Learning Goals and Literature
(01:20:03)
>
Chapter 8: Ranking Skill – Overview
(01:22:12)
>
Models for play level
(01:29:17)
>
The ELO System // Updating the ELO Ranking
(01:42:09)
>
True Skill
(01:59:56)
>
Team Skill
(02:13:33)
>
Conclusion // Alternative Approach
(02:18:20)
>
Chapter 8 – Learning Goals and Literature
Date:
19.06.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 6: Temporal Analysis (cont.) // Chapter 7: Spatial Analytics
(00:00:00)
>
Recap Chapter 6
(00:19:47)
>
Markov Chains and Sequences
(00:32:23)
>
Hidden Markov Models
(00:42:15)
>
Use of HMM – Evaluation: Forward Variables
(00:54:12)
>
Use of HMM – Recognition: Viterbi Algorithm
(00:57:32)
>
Use of HMM – Training: Baum-Welch Estimation
(01:12:14)
>
Real-Value Sequences
(01:15:42)
>
Time series
(01:25:08)
>
Discrete Fourier Transformation (DFT)
(01:37:23)
>
Distances of Time Series // Dynamic Time Warping Distance
(01:43:44)
>
Statistic Models for Time // Homogeneous Poisson Processes
(01:47:58)
>
Parameter assessment
(01:50:54)
>
Chapter 6 – Learning Goals and Literature
(01:52:09)
>
Chapter 7: Spatial Analytics – Overview
(01:54:23)
>
Spatial Data Mining and Games
(01:57:41)
>
Tasks of Spatial Game Analytics
(02:02:45)
>
Spatial Data and Visualization
(02:04:25)
>
Heat Maps
(02:08:38)
>
Kernel density estimator
Date:
12.06.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 5: Game Analytics (cont.) // Chapter 6: Temporal Analysis
(00:00:00)
>
Recap Chapter 5
(00:15:11)
>
Supervised Learning (cont.)
(00:27:38)
>
Instance-based Learning
(00:34:35)
>
Bayesian Learning
(00:52:53)
>
Univariate Distributions // Statistical Models
(01:06:32)
>
Evaluating Supervised Learners // Testing Supervised Predictors
(01:15:11)
>
Stratified k-fold Cross Validation
(01:19:10)
>
Evaluating Classification Results // Classification Metrics
(01:29:17)
>
Chapter 5 – Learning goals
(01:29:33)
>
Chapter 6: Temporal Analysis – Overview
(01:30:14)
>
Player Behavior
(01:36:03)
>
Subsequences and Partitioning // Frequent Subsequence Mining
(01:44:05)
>
Suffix Trees
(01:58:01)
>
Comparing two Sequences
(02:00:23)
>
Levenshtein Distance
(02:10:51)
>
Edit Distances
Date:
05.06.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 5: Game Analytics
(00:00:00)
>
Chapter 5: Game Analytics – Overview
(00:02:36)
>
Why Game Analytics?
(00:07:30)
>
What is Game Analytics?
(00:14:48)
>
Knowledge Discovery on Game Data
(00:20:26)
>
E-Sports Analytics
(00:30:27)
>
Why are Players committing fraud?
(00:41:59)
>
Technical and other ways to cheat
(01:07:30)
>
Countermeasures
(01:21:17)
>
Monitoring player behavior
(01:25:36)
>
Game Balance
(01:41:41)
>
The Analytical Process in Games
(01:49:49)
>
When does Game Analytics work?
(01:54:04)
>
Overfitting // Feature Space, Distance and Similarity Measure
(02:00:51)
>
Formal definition of distance function // Vectors as Object Presentation
(02:04:50)
>
Supervised Learning
Date:
29.05.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 3: Distributed Game Architectures (cont.) // Chapter 4: Data Persistence
(00:00:00)
>
Recap Chapter 3
(00:27:48)
>
Thoughts on Client-Server Communication
(00:31:52)
>
Requirements of Computer Games
(00:37:30)
>
Protocols and Communication Solutions
(00:47:42)
>
Learning Goals and Literature
(00:50:25)
>
Chapter 4: Data Persistence – Overview
(00:52:15)
>
Need for Persistence
(00:58:58)
>
Persistence Layer Requirements
(01:04:45)
>
Methods for Replays and Save Games: State-Log, Transition-Log, Action-Log
(01:23:16)
>
Save Games in MMOs
(01:29:14)
>
MMOGs and Relational Databases, Persistence via Log-files
(01:39:45)
>
Open Issues
(01:43:15)
>
Check-Point-Recovery Methods
(02:10:16)
>
Discussion
(02:14:54)
>
Learning Goals and Literature
Date:
15.05.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 2: The Game Core (cont.) // Chapter 3: Distributed Game Architectures
(00:00:00)
>
Recap Chapter 2
(00:24:22)
>
Insert, Delete, Bulk-Load (cont.)
(00:38:35)
>
Throw-Away Indices, Problems of Data Volatility
(00:42:36)
>
Query Processing: Range-Query, NN-Query and Spatial Joins
(00:52:44)
>
Game Design
(00:56:23)
>
What you should know by now...
(00:59:20)
>
Chapter 3: Overview
(01:03:24)
>
MMOG Architectures, Detailed Client Server Architecture
(01:19:41)
>
Distributing the Game Core, Protocol Content
(01:25:46)
>
Thin Client Solution, Fat Client Solution
(01:33:16)
>
Problems of Centralized and Decentralized Computation
(01:39:17)
>
Local Time
(01:50:26)
>
Application in Games
(01:57:32)
>
Spatial Movement, Dead Reckoning
(02:12:24)
>
Thoughts on Client-Server Communication
Date:
08.05.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 2: The Game Core (cont.)
(00:00:23)
>
Chapter Overview
(00:01:02)
>
Recap
(00:03:51)
>
Game State
(00:04:54)
>
Actions
(00:32:39)
>
Physics Engines
(00:40:10)
>
Spatial Management in Game Servern
(01:01:40)
>
Sharding and Instantiation
(01:09:19)
>
Zoning
(01:22:55)
>
Classic Index Structures
(01:30:32)
>
Important Features of Search Trees
(01:36:40)
>
Requirements for an MMO Server
(01:41:53)
>
Binary Space Partitioning Trees (BSP-Tree)
(01:53:18)
>
R-Tree
(02:02:58)
>
Bulk-Loads within R-Space
Date:
24.04.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 2: The Game Core
(00:00:15)
>
Repeat: Chapter 1
(00:41:46)
>
Chapter 2: The Game Core
(00:41:47)
>
Chapter Overview
(00:58:58)
>
Time Models for Action Processing
(01:36:05)
>
Actions vs. Transactions
(01:45:02)
>
The Game Loop
(02:06:21)
>
Physics Engines
Date:
17.04.2018
Lecturer:
Prof. Dr. Matthias Schubert
Chapter 1: Computer Games
(00:00:07)
>
Why study Games?
(00:11:34)
>
Social Aspects of Computer Games
(00:15:43)
>
Business Models
(00:56:03)
>
Distinction of Games
(01:13:13)
>
Classic Game Genres
(01:37:31)
>
More Genres
(01:39:21)
>
Structure of Computer Games
(01:52:22)
>
Building Blocks in Game Architecture
(01:56:33)
>
Lecture Overview
Date:
10.04.2018
Lecturer:
Prof. Dr. Matthias Schubert
RSS-Feed abonnieren: